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Abstract 

We predict the threshold for continuing saltation of spheres in a turbulent fluid that explicitly 

accounts for the influence of fluid drag, lubrication forces, bed roughness and inter-particle 

cohesion. This reduces the need for the fitting parameters employed in existing formulations. 

The theory is based on a highly idealized model of steady saltation as a collection of particles 

that follow the same average, periodic trajectory – a succession of identical jumps, collisions 

with the bed, and rebounds from it. The saltation threshold is first derived in the limit of large 

particle inertia and, then, extended to infer results when the viscous forces of the fluid and inter-

particle cohesion are not negligible. The theory is successfully compared with existing discrete 

element simulations of spheres interacting with a Reynolds-averaged turbulent fluid and with 

wind tunnel experiments in a range of particle-to-fluid density ratios and particle Reynolds 

numbers for saltation in terrestrial and extra-terrestrial conditions. 

1 Introduction 

The interaction of flows of air or water with loose surface materials is responsible for 

many of the features in the geological record. An identification of the mechanisms involved in 

such interactions and the characterization of the influence that they have on initiating and 

maintaining sediment transport should permit a more subtle and refined reading of this record. In 

extra-terrestrial environments, a better understanding of particle transport driven by flows of 

gases and liquids allows more refined inferences about the conditions that generated features 

observed from afar. Here, we provide a quantitative, analytical description of a threshold for the 

maintenance of one mode of particle transport that incorporates the physical parameters that 

define the fluid flow and the interaction of the particles with the bed. Saltation – the motion of 

grains through successions of jumps induced by a shearing fluid, here considered turbulent – is 

known to be the principal mode of sediment transport by the wind on Earth [Bagnold, 1941; 

Andreotti, 2004; Kok et al., 2012; Charru et al., 2013; Valance et al., 2015] and has been 

suggested to be relevant also for moderate sediment transport by water on Earth [Fernandez 

Luque and Van Beek, 1976; Abbott and Francis, 1977; Niño and García, 1998; Ancey et al., 

2002], although, in the latter case, interparticle collisions above the bed limit its importance 

[Schmeeckle, 2014; Maurin et al. 2016]. 

Saltation in air is usually a continuing process, in which a description of the fluid flow 

field in terms of its mean motion (e.g., Reynolds-averaged) is sufficient to explain why the 

particles move [Sauermann et al., 2001; Jenkins et al., 2010; Durán et al., 2012; Jenkins and 

Valance, 2014]. In contrast, sediment transport in water, at least close to the threshold for 

motion, is usually described as intermittent and erratic, with turbulent fluctuations playing a 

significant role in moving particles [Drake et al., 1988; Nelson et al., 1995; Lajeunesse et al., 

2010]. However, it has been recently suggested [Berzi et al., 2016] that there does exist a 

continuing saltation regime in aquatic sediment transport, although at intensities of the turbulent 

shearing larger than those usually encountered in laboratory experiments, but typical of some 

fluvial environments (such as sand-bed rivers). The prediction of continuing saltation in water on 

Earth at large intensities of turbulent shearing indicates that continuing saltation is likely to be 

the precursor to dense, collisional (sheet) flows. If so, continuing saltation provides the link 

between rolling, intermittent jumping, and sliding and sheet flows [Gao, 2008].The main 

difference between Aeolian and aquatic saltation on Earth is in the ratio of particle-to-fluid 

density: in the Aeolian case, the density ratio is of order 103, while in the aquatic case is of order 

1. This has important consequences, for example, on the role of the collisions with the bed, or 
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splash, [Beladjine et al., 2007] in determining the flux of sediment from the bed [Berzi et al., 

2016]. 

Aeolian saltation on Earth is associated with the development of dunes [Charru et al., 

2013]. Because dunes have been observed on Mars, Venus [Iversen and White, 1982; Greeley et 

al., 1984], and Titan [Lorenz et al., 2006], a satellite of Saturn, it seems natural to assume that 

saltation is also relevant to these extra-terrestrial environments. Interestingly, in such situations, 

the density ratio is very different from the typical terrestrial values: it is roughly 40 on Venus, 

about 200 on Titan and of order 105 on Mars [Iversen and White, 1982; Burr et al., 2015]. A 

large effort has been devoted to determine the wind speed necessary for the saltation process to 

initiate, and how this threshold is influenced by the planetary conditions. Establishing under 

what conditions saltation is possible could determine an Aeolian origin for the streaks, ripples 

and dunes observed on the surface of minor solar system bodies, such as moons, comets and 

asteroids [Hansen et al., 1990; Sagan and Chyba, 1990; Thomas et al., 2015]. The first 

formulation for this initiation threshold was based on considerations of rotational equilibrium of 

a sphere in contact with a surface under the effects of gravity and aerodynamic drag [Bagnold, 

1941]; successive approaches have included the role of buoyancy [Ward, 1969], aerodynamic lift 

and inter-particle cohesive forces [Ward, 1969; Iversen et al., 1976; Iversen and White, 1982; 

Shao and Lu, 2000], inter-particle impact force [Iversen et al., 1987], and turbulent fluctuations 

[Lu et al., 2005]. The resulting expressions for the threshold involve complicated functions of the 

particle Reynolds number at the threshold wind velocity, the density ratio, and the inter-particle 

cohesive forces. These must be obtained from fitting with experiments performed in wind 

tunnels that simulate terrestrial and extra-terrestrial conditions [Iversen et al., 1976; Greeley et 

al., 1984; Burr et al., 2015]. Given that these approaches are meant to determine the wind speed 

at which a single particle begins to rotate, they actually describe the threshold for the initiation of 

rolling rather than that for continuing saltation. In the experiments of Burr et al. [2015], intended 

to reproduce the conditions on Titan, a threshold was identified as the value of wind speed at 

which there was a continuing motion along the central region of the longitudinal extent of the 

bed. Their measurement is consistent with the definition of continuing, or dynamic, saltation and 

explains why the expressions of Shao and Lu [2000] and Iversen and White [1982] for the 

initiation of rolling underpredicted the experimental data. 

The threshold for continuing saltation coincides with the minimum fluid speed necessary 

to sustain the saltation process once it has started. This dynamic threshold has been the focus of 

many recent studies. Andreotti [2004] identified two species of particles, in the limit of large 

particle size, each characterized by a different constant trajectory (i.e., he assumed a constant slip 

velocity of the particles at the bed). He numerically solved for the particle motion and fit an 

expression for the dynamic threshold with three model parameters. Claudin and Andreotti [2006] 

extended the analysis of Andreotti [2004] to small particle size, including the force of cohesion, 

with a dynamic threshold that was to be determined through numerical integration of the 

equations of motion. In a different approach, Kok [2010] proposed a statistical model for the 

saltation threshold, assuming once again a constant slip velocity of the particles at the bed. He 

obtained an approximate expression for the threshold, which was the result of a fit to the 

numerical solution of the model, characterized by six dimensional parameters. Also Pähtz et al. 

[2012] assumed a constant particle slip velocity at the bed and proposed a physically based 

model of saltation with an analytical expression of the threshold that involved four parameters fit 

by experiments. Finally, Pähtz and Durán [2016] removed the assumption of constant slip 

velocity at the bed and replaced it with an assumption, motivated from numerical simulations, of 
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a constant ratio of shear to normal particle stresses there. Then, using a phenomenological 

correlation between the particle and fluid horizontal velocities and the fluid shear stress, obtained 

from discrete element simulations, they provided an expression for the saltation threshold that 

included the role of particle size, cohesive forces, and the fluid rarefaction. This expression 

contains functions that need to be solved by iteration and four parameters obtained by fitting 

with simulations. 

Jenkins and Valance [2014] modelled steady, continuing Aeolian saltation by imagining 

that all the particles follow the same trajectory between successive impacts with the bed, and that 

this trajectory, governed by gravity and fluid drag, is periodic. In the analysis, they solved for the 

trajectories numerically, making use of boundary conditions for the impact of a sphere with the 

bed derived from experiments [Beladjine et al., 2007; Crassous et al., 2007], without assuming 

either a constant slip velocity or a constant stress ratio for the particles at the bed. Berzi et al. 

[2016] extended the analysis to arbitrary values of the density ratio and provided analytical 

solutions for periodic trajectories over hydrodynamically rough beds (i.e., beds with roughness 

height larger than the thickness of the viscous sublayer). The family of periodic trajectories that 

satisfy the rebound boundary conditions were parametrized by the take-off velocity – the initial 

vertical velocity after the rebound. We emphasize that the model of Jenkins and Valance [2014] 

and Berzi et al. [2016] must be viewed as a simple, physically-based device to estimate how 

averages over the entire population of saltating particles, such as saltation lengths and heights 

and flow rate, are related to the intensity of the shearing fluid in steady configurations. It is not 

meant to, and it does not, give realistic local distributions of velocities and volume concentration. 

The model of periodic trajectories cannot be employed in unsteady situations. In such situations, 

there is a net flux of particles to or from the bed and the averages above the bed are evolving. 

Each periodic trajectory is associated with a value of the fluid shear stress at the bed, determined 

as part of the solution. The fluid shear stress at the bed, which can be related to the take-off 

velocity, exhibits a minimum. This minimum is the smallest value of fluid shear stress at the bed 

that will maintain continuing saltation. Berzi et al. [2016] provide an explicit expression for this 

threshold, valid in the limit in which the particle inertia is large relative to the fluid viscous 

forces. 

Here, we extend the analysis of Berzi et al. [2016] to deal with arbitrary values of particle 

inertia, explicitly accounting for non-linear drag, the influence of lubrication forces – the fluid 

viscous forces generated in the gap between two colliding spheres that reduce the interparticle 

impact force) in the impact with the bed, and particle motion over hydrodynamically smooth and 

transitional beds – that is beds with roughness heights less than or similar to the thickness of the 

viscous sublayer. We also include the role of inter-particle cohesion in the way suggested by 

Shao and Lu [2000]. The theory incorporates characterizations of the physical mechanisms that 

govern saltation and reduces the need for fitting parameters. 

In Section 2, we present the analytical theory; in Section 3, we make comparisons with 

the saltation threshold obtained in numerical solutions for the periodic trajectories, discrete 

element simulations of spheres interacting with a continuum-averaged fluid [Durán et al., 2012], 

and wind tunnel experiments [Iversen and White, 1982; Burr et al., 2015]. 

2 Theory 

We focus on steady, uniform, continuing saltation of spheres of diameter d and mass 

density ρs over a horizontal particle bed. A turbulent shearing flow of a fluid of mass density ρf 

and dynamic viscosity µf drives the flow in the presence of gravity, with g the gravitational 
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acceleration. As in our previous works [Jenkins and Valance, 2014; Berzi et al., 2016], we 

consider the average of the distribution of particle trajectories at a given strength of the turbulent 

shearing; in a steady situation, the average trajectory must be periodic. The horizontal and 

vertical particle velocities are u and v, respectively. Two coefficients of restitution characterize 

the impact of a particle with the bed and, if one neglects the role of lubrications forces, they are 

only a function of the angle of impact [Oger et al., 2005; Beladjine et al., 2007]. In an impact 

with the bed, ey is the negative of the ratio of the particle vertical velocities after and before, and 

e is the ratio of the particle speeds after and before. For the saltation to continue, the mean 

horizontal velocity of the turbulent fluid, U, must be large enough to sustain the periodic motion. 

The flow configuration is depicted in Figure 1. 

 

Figure 1. Sketch of the periodic trajectory: L and H are the trajectory length and height, 

respectively; U is the horizontal fluid velocity. 

We characterize the particles through the fall particle Reynolds number 

( ) 3/2R 1 / /f fg dρ σ σ µ= − , where σ = ρs/ρf is the density ratio. In what follows, all quantities 

are made dimensionless using the diameter and mass density of the particle and the reduced 

gravitational acceleration g(σ-1)/σ. 

Given that the particles are subject to gravity, buoyancy, and fluid drag, assuming the 

usual logarithmic velocity profile for the turbulent fluid, and using the experimental dependence 

of the coefficients of restitution on the angle of impact, modified to incorporate the additional 

damping due to lubrications forces on binary collisions [Barnocky and Davis, 1988; Gondret et 

al., 2002; Yang and Hunt, 2006], numerical solutions can be obtained for the periodic trajectories 

[Jenkins and Valance, 2014; Berzi et al., 2016]. The differential equations governing the particle 

and fluid motion and the boundary conditions for these are briefly summarized in Appendix A. 

Other hydrodynamic forces such as lift, Magnus, added mass and Bassett forces [Maxey and 

Riley, 1983] are ignored in the analysis, given that their order of magnitude is that of the fluid 

drag divided by the dimensionless trajectory height [Andreotti, 2004], i.e., mostly negligible. 

A simplified analytical solution to a periodic trajectory, in excellent agreement with the 

full numerical solution, can be obtained [Berzi et al., 2016] by: ignoring the vertical drag; 

assuming a uniform, horizontal fluid velocity profile; and ignoring the vertical particle velocity 

in the expression of the drag coefficient (equation A1). An approximate integration of the 

logarithmic fluid velocity profile over the height, H, of the trajectory gives the fluid shear stress 

at the bed, S0, in terms of the averaged fluid velocity, U , as [Berzi et al., 2016]: 
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where κ = 0.41 is von Kármán’s constant, y0 is the dimensionless roughness length, and K is a 

dimensionless numerical constant, taken equal to 1.5 by Berzi et al. [2016] based on a fit to the 

numerical solutions of the periodic trajectories. If the vertical drag is ignored, the y-component 

of the particle velocity is ballistic, and the trajectory height is simply 

 21
,

2
iH v=  (2) 

where vi is the take-off velocity. Also the fluid depth-averaged velocity U  is an increasing 

function of the take-off velocity [Berzi et al., 2016]. Hence, both the numerator and the 

denominator of equation (1) are increasing functions of vi and the fluid shear stress at the bed has 

a minimum at a critical value vc of the take-off velocity. Given that the dimensionless particle 

shear stress is the difference between the dimensionless fluid shear stress far from the bed – the 

Shields parameter S* – and the dimensionless local fluid shear stress, the minimum in S0 

corresponds also to the minimum Shields parameter for continuing saltation in the absence on 

inter-particle cohesion. 

2.1 Limit of infinite particle inertia 

We first calculate the critical Shields parameter in the limit of infinite particle inertia. 

This limit corresponds to large values of the particle Reynolds number R, for instance, large 

particle diameters for given particle and fluid properties. In this limit, the lubrication forces play 

no role in damping the rebound of the particle at the bed, so that ey is simply equal to 1 – the 

vertical velocities before and after the impact, vf and vi, must have the same absolute value and 

opposite sign when the vertical drag is ignored and the trajectory is periodic – that is, vi = -vf. 

Hence, from equation (A15), the particle horizontal velocity before the impact is 
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where, as explained in Appendix A, ay and by are numerical constants determined in experiments 

on collisions with the bed. Similarly, neglecting the term inversely proportional to the Reynolds 

number in equation (A12) gives, with equation (3), 

 ( ) ( )
1/2 1/2

2 2 2 2 2 2 21 1 ,i f i i iu e u e v e A e v Dv   = + − = + − ≡     (4) 

where, from equations (A14) and (3), /e a b A≡ − , with a and be also experimentally determined 

numerical constants. In this work, we use ay = 0.30, by = 0.15, a = 0.87 and b = 0.72 [Beladjine et 

al., 2007]. 

Considering only the form drag in the particle horizontal momentum balance gives a 

relation between the fluid horizontal velocity and the particle horizontal velocities before and 

after impact (equation B3). Using equations (3) and (4) in equation (B3), and the fact that the 

time of flight in a ballistic trajectory is 2f it v= , 
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Employing equations (2) and (5) in equation (1), and requiring for an extremum that the 

derivative of S0 with respect to the take-off velocity be equal to zero, determines the critical take-

off velocity, vc, for which the fluid shear stress at the bed is minimum, 
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In equation (6), we have used 0 / 30sy k=  [van Rijn, 1984; Jenkins and Valance, 2014] – the 

roughness length for hydrodynamically rough beds, given that we are in the limit of large R 

[Schlichting and Gersten, 2000]. In this, ks is the roughness, taken to be equal to one particle 

diameter [Jenkins and Valance, 2014]. 

Equation (6) is an implicit expression, which can be solved via iteration (for example, a 

successive substitution scheme or a Newton-Raphson method using 1/22  as a first guess for the 

critical take-off velocity). An approximate, explicit solution can be obtained by expanding the 

logarithm in equation (6) about vc = 1/22 , 
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Equation (7) is a quadratic in the take-off velocity giving 

 ( )
1/2

2 1/2 ,cv α α βσ= − + +  (8) 

where ( ) ( )1/22 ln 15 / / 2 ln 2 / 2 2 / 2skα ≡ + −    and ( ) ( )
1/23/22 / 0.6 /A D A Dβ ≡ − +   . 

For a given set of numerical constants in the rebound law, the critical take-off velocity is 

a function only of the density ratio – equation (8) indicates that, for moderate to high density 

ratio, vc is proportional to σ1/4 – and so also is the critical Shields parameter. When σ is 2.5, as is 

the case for aquatic saltation on Earth, vc is about 1/22 , so that the corresponding saltation height, 

from equation (2), would be roughly one particle diameter; when σ is 2500, as is the case for 

Aeolian saltation on Earth, vc is about 5, so that the corresponding saltation height would be 

roughly 13 particle diameters. For larger density ratios, the take-off velocity predicted by 

equation (8) is larger than 5, i.e., the critical value at which the splash limits the saltation in the 

model of Berzi et al. [2016]. In that case, the minimum Shields parameter for continuing 

saltation is still given by equation (1), with equations (2) and (5), in which vc is taken equal to 5. 

Using equations (2) and (5) in equation (1), with the take-off velocity given by 

equation (8) provides the critical Shields parameter at infinite R, 

 

22 1/222
1/215

ln .
2 0.6

c
c c

s

vK A D A D
S v

k

κ
σ

σ

−

∞
    + − 

= +     
      

 (9) 



Confidential manuscript submitted to Journal of Geophysical Research: Earth Surface 

 

2.2 Effects of finite particle inertia 

To determine the continuing saltation threshold at finite values of the particle Reynolds 

number, we first assume that the critical take-off velocity is still given by equation (8), 

independent of R, even when R is not large, and that the vertical drag can still be neglected. The 

validity of these strong assumptions will be assessed in the next section, where comparisons with 

the numerical solutions of the periodic trajectories are shown. Then, we have to consider four 

effects that become important at finite values of R and affect the expression of the horizontal 

fluid velocity, the roughness length and the critical Shields parameter. 

First, is the influence of lubrication forces on the impact of the particle at the bed. 

Inverting equation (A13), with vi = -vf = vc, gives 
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while, from equations (A14) and (A15), 
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The coefficients of restitution are now functions of the density ratio and the particle Reynolds 

number. From equation (A15), 
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and, from equation (A12), 
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Second, is the influence of both form and viscous drag in the horizontal momentum 

balance for the particle. In this case, the horizontal depth-averaged fluid velocity is given by the 

quadratic (see Appendix B) 
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where we have employed the ballistic time of flight, 2f ct v= . 

Third, is the nature of the bed and the corresponding value of the roughness length. At 

finite values of R, the bed can be hydrodynamically smooth, transitional or rough, depending on 

the ratio between the roughness length and the thickness of the viscous sublayer [Schlichting and 

Gersten, 2000]. The critical Shields number, c
S , for having continuing saltation is, then, from 

equations (1) and (2), the implicit solution of: 
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where U  is given by equation (14), with equations (8) and (10)-(13), and the roughness length 

is, for instance [Guo and Julien, 2007], 

 
*

0 *

R1
1 exp ,

9 R 30 26

s sk k
y

   
= + − −  

   
 (16) 

where ( )
1/2*R R cSσ=  is the boundary Reynolds number based on shear velocity. When R* is 

less than 5 or greater than 70, the bed is hydrodynamically smooth or rough, respectively 

[Schlichting and Gersten, 2000]; for intermediate values, the bed is transitional. Equation (15), 

with equation (16), can be solved via a successive substitution scheme or a Newton-Raphson 

method, using, as a first guess, the threshold value of the Shields parameter obtained from 

equation (15) with y0 = ks/30 – the rough limit. Alternatively, the limit of large R can be dealt 

with as above; and, in the limit of small R, where  R* expanded as a quadratic in 

 ln R*  about  ln R
* = 1/ 10, leading to a cubic equation for  ln R*. For values of  ln R*  less than 

unity, the solution of the cubic provides an approximate expression for  ln R*  and, therefore, for 

Sc (see Appendix C for more details). 

Fourth, is the inter-particle cohesion, which becomes important at small values of R. 

There are several factors responsible for inter-particle cohesion. If we disregard the possibility of 

chemical binding, cohesion is caused by the combined effects of van der Waals forces, 

electrostatics, and liquid bridges. The most sophisticated approach would be to take into account 

the role of cohesive forces in the collision of the particles with the bed, and to modify the 

coefficients of restitution accordingly [Brilliantov et al., 2007; Luding, 2008; Pasha et al., 2014]. 

Here, we prefer to adopt a simpler approach by incorporating a yield value for the particle shear 

stress associated with a Coulomb cohesion term, χ [Richefeu et al., 2006]. Then, the minimum 

Shields parameter for continuing saltation in the presence of cohesion, 
*

c
S , must exceed the 

threshold in absence of cohesion, Sc, by a quantity equal to χ: 

 
* .

c c
S S χ= +  (17) 

It has been shown that van der Waals and electrostatic forces [Shao and Lu, 2000], and the force 

associated with the presence of liquid bridges [Richefeu et al., 2006] are all proportional to the 

particle diameter. Hence (see Appendix D), equation (17) becomes 

 
* nB

R
c c

S S
σ

= +  (18) 

where ( )nB / 1 /f gdγ µ σ σ = −
 

 is a Bingham number and γ is the dimensional specific inter-

particle force (in N/m). When cohesion is due to van der Waals and electrostatic forces, γ is of 

order 510 N/m−  [Shao and Lu, 2000]; when cohesion is due to liquid bridges, γ is of order 
110 N/m−  [Richefeu et al., 2006]. 

3 Discussion and comparisons 

We first test the capability of the present theory to reproduce the results obtained by 

numerically solving the differential equations governing the periodic trajectories given in 
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Appendix A. The process of obtaining the saltation threshold from the numerical solutions to the 

periodic trajectories is tedious. We initially fix the values of the density ratio and particle 

Reynolds number; then, we compute the periodic trajectory in the limit of vanishing vertical 

mass flux for successive decreasing values of the Shields parameter, using the “bvp4c” solver in 

MATLAB, until we reach a point where no steady solution exists. The smallest value of the 

Shields parameter compatible with the existence of a steady solution is taken to be the threshold.. 

It is worth emphasizing that the numerical solutions to the periodic trajectories do not include the 

effect of inter-particle cohesion. Figure 2 shows that the solution of equation (15), with 

equations (8), (10)-(13) and (16), is in excellent agreement with the results of the numerical 

solutions to the periodic trajectories for all values of σ and R. The solution also permits an easy 

check on the influence of finite particle inertia mentioned in the previous Section. We can ignore 

the influence of the lubrication forces on the impact with the bed by using equations (3) and (4) 

instead of equations (12) and (13) in equation (14); and we can consider the bed as always 

hydrodynamically rough by using 0 / 30
s

y k=  instead of equation (16). 

At small density ratios (e.g., σ = 2.5), the bed is always hydrodynamically rough (the 

values of R* for the all the data considered here are reported in Figure 3; for the same density 

ratio, different values of R* indicate that particles of different size have been employed) and the 

lubrication forces during the impact with the bed are responsible for the decrease of Sc with R. At 

large density ratios (e.g., σ = 2500), the effect of lubrication forces is always negligible, but the 

hydrodynamic nature of the bed has a strong influence on the saltation threshold. For 

intermediate values of the density ratio both effects are important. 

 

Figure 2. Numerical (symbols, from numerical solutions of the periodic trajectories) critical 

Shields parameter, Sc, for continuing saltation as a function of the particle Reynolds number, R, 

for particle-to-fluid density ratios: σ = 2.5 (circles), σ = 25 (lower triangles), σ = 250 (upper 

triangles) and σ = 2500 (squares). The solid lines represent the solution of equation (15) when 

both the lubrication forces and the hydrodynamic nature of the bed are included. The dashed and 
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S c

R



Confidential manuscript submitted to Journal of Geophysical Research: Earth Surface 

 

dot-dashed lines represent the solution when either lubrication forces are ignored or the bed is 

considered hydrodynamically rough, respectively. 

 

Figure 3. Boundary Reynolds number, R*, at the saltation threshold as a function of the density 

ratio, σ, for data reported in previous investigations: numerical solutions of the periodic 

trajectories (open symbols, same as in Figure 2); discrete element simulations [Durán et al., 

2012] (half-filled diamonds); and experiments in wind tunnels [Iversen and White, 1982; Burr et 

al., 2015] (filled symbols). Also shown are the upper and lower limits for hydrodynamically 

smooth (solid line) and rough (dashed line) beds. 

We next make comparisons with the results of discrete element simulations of spheres 

coupled with a continuum. Reynolds-averaged description of the fluid hydrodynamics in a quasi-

2D domain [Durán et al., 2012]. The density ratio was changed in the range comprised between 

2 and 2000, while the product Rσ1/2 was kept constant and equal to ten; consequently, the bed 

was hydrodynamically smooth (Figure 3). In the simulations, both the non-linear drag, and the 

presence of a viscous sublayer were modelled; while neither the influence of lubrication forces 

on particle collisions nor inter-particle cohesion were included. The measured threshold should, 

therefore, be compared with the solution of equation (15), together with equations (8) and (16), 

in which the fluid depth-averaged velocity is given by equation (14), with equations (3) and (4). 

Figure 4 shows a reasonable agreement between the present theory, which correctly capture the 

decrease of the threshold with the density ratio, and the results of the simulations. 

Iversen and White [1982] proposed an expression for the static threshold of saltation in 

the absence of cohesive forces of the type ( )*Rc cS S= , where the dependence on R* must be 

determined by fitting to experimental data. Shao and Lu [2000] further simplified the expression 

of Iversen and White and proposed that 0.0123cS = . If the product Rσ1/2 is kept constant, neither 

model is able to capture the density ratio dependence shown in Figure 4. Iversen et al. [1987] 

suggested a modification to the expression of Iversen and White [1982] that includes a 

dependence on the density ratio to be once again determined by fitting with experiments. 

Unfortunately, Iversen et al. [1987] were only able to provide an explicit expression for R* larger 

than 10. Lu et al. [2005] were able to include non-empirically a dependence of the static 

threshold on the density ratio through the role of the turbulent fluctuations. Given that turbulent 
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fluctuations are not present in the numerical simulations of Durán et al. [2012], that model 

cannot explain the results shown in Figure 4. 

Unlike these examples, models of the dynamic threshold naturally include a dependence 

on the density ratio. The two-species model of Andreotti [2004] has been developed in the limit 

of large particle Reynolds number, and therefore does not apply to the conditions of Durán et al. 

[2012]. As already mentioned, it has been extended to small values of R by Claudin and 

Andreotti [2006], but the threshold must be obtained via numerical integration of differential 

equations. The predictions of the explicit model of Pähtz et al. [2012] are in excellent agreement 

with the numerical simulations for large density ratio, but strongly overpredict the threshold for 

σ less than 100 (Figure 4). The model of Pähtz and Durán [2016] is in better agreement with the 

data for small density ratios. It is worth emphasizing that our approach permits the dependence 

on the dimensionless numbers governing the phenomenon to be expressed explicitly. 

 

Figure 4. Critical Shields parameter, Sc, as a function of the density ratio, σ, when Rσ1/2=10: 

discrete element simulations [Durán et al., 2012] (diamonds); present theory without lubrication 

forces and cohesion (solid line); Iversen and White’s model [1982] (dashed line); Shao and Lu’s 

model [2000] (dot-dashed line); Pähtz et al.'s model [2012] (dotted line). 

Finally, we make comparisons with available experiments performed in wind tunnels 

[Iversen and White, 1982; Burr et al., 2015]. In these experiments, the density ratio was kept 

constant, while the size of the particles was changed, thus changing the particle Reynolds 

number. Actually, changing the size of the particles has an effect also on the Bingham number, 

and this must be taken into account to correctly evaluate the role of cohesive forces. Given the 

fluid properties and the gravitational acceleration in the experiments, the Bingham number can 

be simply related to the particle Reynolds number: 1/3

nB R−∝  (see Appendix D). 

In the experiments performed by Burr et al. [2015], the threshold was identified as the 

value of the Shields parameter (actually, the fluid shear velocity) at which there was a continuous 

motion over 50% of the central region around the longitudinal axis of the bed. This criterion is 

certainly arbitrary, but, in the absence of more rigorous measurements, we make comparisons 

with those data that are, at least, consistent with our picture of continuing saltation. In the 

experiments performed by Iversen and White [1982] at σ = 2083, the measured threshold is also 

consistent with the continuing saltation threshold. Experiments for σ = 40 are also available 

[Greeley et al., 1984], but the experimental criterion to determine the threshold, based on the 
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beginning of sporadic saltation of groups of grains, has more to do with intermittent motion than 

with continuing saltation. Consistently, our theory (not shown here for brevity) overpredicts the 

experimental threshold in that case. Figure 5 shows that the present theory is able to reproduce 

the experimental points at low values of the particle Reynolds number only if the effect of 

cohesion (equation 18) is included. To match the experiments, we use K = 1 (to fit the few points 

in the high R limit when σ = 76), and 1/3

nB 10R−= , independent of the density ratio. This 

corresponds to values of γ close to 10-5 N/m, indicating that van der Waals and electrostatic 

forces are the sources of cohesion (Appendix D). 

 

Figure 5. Experimental (symbols) critical Shields parameter with cohesion, Sc
*, as a function of 

the particle Reynolds number, R, for particle-to-fluid density ratios: σ = 76 (circles and solid 

lines); σ = 172 and 183 (upper triangles and dashed lines); σ = 2083 (squares and dot-dashed 

lines). Black and grey lines represent the present theory with and without cohesion. 

Here, it seems worthwhile to review the coefficients, other than the fluid and particle 

properties, that enter our theory in absence of cohesion. This indicates how the predictions of the 

model might be refined. 

In our theory, the four coefficients a, b, ay and by (of which only 3 are actually 

independent) in the expressions for the coefficients of restitution (equations A14 and A15) can 

be, in principle, determined for any types of particle and bed from experiments or simulations 

[Beladjine et al., 2007]. The dependence of the coefficients of restitution on the product σR 

(equations A12 and A13) has been taken from the theoretical analysis of lubrication by Barnocky 

and Davis [1988]. This dependence can be refined from ad hoc experiments on the impact of two 

particles immersed in a viscous fluid at different relative colliding velocities [Gondret et al., 

2002; Yang and Hunt, 2006]. 

We use an expression for the steady fluid drag exerted on the particle that is valid for 

spheres (equation A1). Other particles (such as the walnut shells used by Burr et al. [2015]) and 

the incorporation of unsteady effects might require a different expression. 

The value of the roughness ks can be determined from measurements of the origin of the 

logarithmic fluid velocity profile, such as those performed – but unfortunately not reported – by 

Burr et al. [2015]. In water, ks has been estimated to be about 2.5 particle diameters [van Rijn, 

1984], rather than one diameter as adopted here. The effect of changing ks from 1 to 2.5 is shown 
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in Figure 6, where the Shields parameter at the saltation threshold is plotted versus the particle 

Reynolds number when σ = 76 and cohesion is neglected. 

The parameter K in the expression of the fluid shear stress at the bed (equation 1) must be 

introduced because of the approximate integration of the logarithmic fluid velocity profile over 

the trajectory height [Berzi et al., 2016] and the assumption that the fluid velocity is uniform 

when solving the horizontal particle momentum balance. Consequently, K is the only fitting 

parameter for cohesionless particles in our model for the continuing saltation threshold, although 

we do know that it must be of order unity. The effect of changing K from 1.5 to 1 when σ = 76 is 

also depicted in Figure 6. Actually, K can be fit from measurements of the saltation threshold at 

large particle Reynolds number, where Sc saturates. 

 

Figure 6. Theoretical (lines) critical Shields parameter, Sc, in the absence of cohesion as a 

function of the particle Reynolds number, R; for particle-to-fluid density ratio σ = 76 when: 

K = 1.5 and ks = 1 (dashed line); K = 1 and ks = 1 (solid line); K = 1.5 and ks = 2.5 (dot-dashed 

line). Also shown are the experimental points (circles). 

4 Conclusions 

We have developed a method to predict the threshold for continuing saltation in a 

turbulent shearing flow that is valid at arbitrary values of the particle-to-fluid density ratio and 

fall particle Reynolds number. Consequently, the predictions apply to both terrestrial and extra-

terrestrial conditions. The treatment is based on analytical solutions for periodic trajectories – 

those endless, identical, jumps that a single particle must follow in steady motion. If all of the 

particles in the system are imagined to follow such a periodic trajectory, there is a minimum 

shear stress that the fluid must exert at the bed to sustain the motion. We have identified this with 

the threshold for continuing saltation. 

We have shown how viscous and form drag, lubrication forces, the hydrodynamic nature 

of the bed, and cohesive forces influence this threshold. The expression for the threshold permits 

the isolation of individual physical mechanisms and allows their contribution to be quantified. At 

large density ratios, as in Aeolian saltation on Earth or Mars, the lubrication forces are 

negligible. The bed can be hydrodynamically smooth, transitional or rough and the decrease in 

the Shields parameter with the increase in the fall particle Reynolds number is due to cohesion. 

At small density ratios, as in aquatic saltation on Earth, the lubrication forces are effective in 

damping the impact of the particles with the bed, the fluid force is due to a combination of 
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viscous and form drag, and the bed is, typically, hydrodynamically rough. At large values of the 

fall particle Reynolds number, there is a dependence of the Shields parameter on the density 

ratio, not accounted for in previous formulations, due to form drag. At small values of the fall 

particle Reynolds number, inter-particle cohesion is dominant. 

We have shown that the present theory is capable of reproducing the quantitative 

determinations of thresholds made in discrete element simulations of spheres, coupled with a 

Reynolds-averaged description of the fluid, and the physical experiments in wind tunnels, meant 

to reproduce Aeolian saltation on Earth and Titan. 

We have characterized the strength of the minimum fluid shear stress at the bed for which 

continuing saltation is possible and indicated how this threshold depends upon the properties of 

the fluid and the particles. Consequently, evidence of particle flows in the geologic record or in 

observations of distant bodies provides lower bounds on fluid velocities and, perhaps, 

information regarding the nature of the particles on the surface of a distant body. 

Appendix A: Numerical solutions of the periodic trajectories 

We briefly summarize the equations that govern the periodic saltation. If the flow is steady 

and uniform, the velocities are only functions of the vertical distance from the bed y. We 

characterize the drag exerted on the particles through a nonlinear drag coefficient, which is, in 

dimensionless form, 

 ( )
2 20.3 18

,
R

DC U u v
σ σ

= − + +  (A1) 

In the following, we use the subscripts plus and minus to label quantities in the upward and 

downward parts of a trajectory, respectively. The upward and downward components of the 

particle velocity are governed by 

 ( )d
,

d
D

u
v C U u

y

+
+ + += −  (A2) 

 
d

1 ,
d

D

v
v C v

y

+
+ + += − −  (A3) 

and 

 ( )d
,

d
D

u
v C U u

y

−
− − −= −  (A4) 

 
d

1 ,
d

D

v
v C v

y

−
− − −= − −  (A5) 

respectively. The horizontal coordinates x+ and x- are functions of the vertical coordinate y, 

 
d

,
d

x
v u

y

+
+ +=  (A6) 

and 
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d

.
d

x
v u

y

−
− −=  (A7) 

Upon employing Prandtl’s mixing length hypothesis, the horizontal velocity of the 

turbulent fluid is given in terms of fluid shear stress S by 

 
( )
( )

1/2

0

d
,

d

SU

y y y

σ

κ
=

+
 (A8) 

where κ = 0.41 is von Kármán’s constant and y0 is the dimensionless roughness length. An 

expression for the latter, valid for hydrodynamically smooth, rough and transitional beds, is [Guo 

and Julien, 2007] 

 
( )

( )
1/2

0 1/2

R1
1 exp ,

30 269 R

ss
k Sk

y
S

σ

σ

   
= + − −  

    

 (A9) 

where ks is the roughness, here taken to be equal to one particle diameter [Jenkins and Valance, 

2014]. 

The fluid shear stress, S, is the difference between the dimensionless fluid shear stress far 

from the bed, S* - the Shields parameter – and the particle shear stress s: S = S*-s. The particle 

shear stress is 

 ( ) ,s c v u c v u
+ + + − − −≡ − +  (A10) 

where c is the particle concentration. In steady, uniform saltation, the vertical mass fluxes of 

ascending and descending particles must balance at any point, and must be independent of the 

vertical position. Hence, 

 
0
,c v c v φ+ + − −= − =  (A11) 

where φ0 is the vertical mass flux at the bed, i.e., the pick-up function. 

The system of equations A1 through A11 permits the determination of the seven unknowns 

u+, v+, u-, v-, x+, x-, and U, after the application of seven boundary conditions. The latter are the 

kinematic relations ( )0 0x+ = , ( )0x L− = , ( ) ( )x H x H+ −= , ( ) ( )u H u H+ −= , ( ) ( ) 0v H v H+ −= = , 

where H and L are the height and the length of the periodic particle trajectory, and the no-slip 

condition ( )0 0U = . The trajectory height and length can be determined as part of the solution, 

given the two conditions for the periodic rebound of a particle at the bed: 

 ( ) ( )
( )1/2 1/2

2 2 2 2
62 1

,
R

i i f f

e
u v e u v

σ

+
+ = + −  (A12) 

where ( )0iu u+= , ( )0fu u−= , ( )0iv v+= , and ( )0fv v−= ; and 

 
( )62 1

,
R

y

i y f

e
v e v

σ

+
= − −  (A13) 

where e and ey are determined in terms of the parameters a, b, ay and by and the tangent of the 

angle of departure vf/uf measured in the collision experiments [Beladjine et al., 2007] by 
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f

f

v
e a b

u
≡ +  (A14) 

and 

 .
f

y y y

f

u
e a b

v
≡ − −  (A15) 

The parameters a, b, ay and by are numerical constants that depend on the coefficients of normal 

restitution and sliding friction of the particles and whether the bed is rigid or erodible [Oger et al., 

2005; Beladjine et al., 2007; Crassous et al., 2007]. In equations (A12) and (A13), we assume that 

the coefficients of restitution in a rebound depend on the product of the density ratio and the fall 

particle Reynolds number in the same way as the coefficient of normal restitution in a binary 

collision derived by Barnocky and Davis [1988] and experimentally confirmed [Gondret et al., 

2002; Yang and Hunt, 2006]. 

The numerical solution to the periodic trajectory is determined by two inputs: the Shields 

parameter, S*, and the pick-up function φ0, or, equivalently, the vertical velocity after the rebound, 

iv . 

Appendix B: Integration of the particle horizontal momentum balance 

If we assume that the fluid horizontal velocity is uniform and equal to U , with the drag 

coefficient given by equation (A1) and neglect the particle vertical velocity there, the horizontal 

momentum balance for the particle is, 

 ( ) ( )
2d 0.3 18

.
d R

u
U u U u

t σ σ
= − + −  (B1) 

Integrating along the particle trajectory between t = 0, when u = ui, and t = tf (time of flight), 

when u = uf, gives 

 
( )
( )

0.3 18 / R 18
exp .

R0.3 18 / R

fi
f

f i

U uU u
t

U u U u σ

− +−  
=  

− − +  
 (B2) 

At very large R, the viscous drag can be ignored in equation (B1), and the integration gives, 

approximately, 

 ( )
1/2 1/2

2
1/21

4 .
2 2 0.3 2 0.3

f i f i f i f i

f i

f f

u u u u u u u u
U u u

t t
σ σ

    + − + −
= + − + ≈ +            

 (B3) 

Appendix C: Critical Shields parameter in the limit of small particle inertia 

Equation (15) can be written, with y0 = 1/(9R*) and R* = (σSc)1/2, as 

 
* 2 * 1/29

R ln ln R .
2

cv K Uκ
  

+ =  
  

 (C1) 

Expanding R* in powers of *ln R  about *ln R 1/10=  gives 
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R 1 ln R ln R .

10 2 10
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= + − + −  

   
 (C2) 

Then, upon inserting equation (C2) into equation (C1), 

 ( )
2

1/10 * * 2 * 1/21 9 181 9
ln R ln R ln ln R .

2 10 200 2
ce v K Uκ

    
+ + + =       

 (C3) 

Appendix D: Dimensionless cohesion 

Coulomb cohesion is proportional to the tensile strength [Richefeu et al., 2006] – the inter-

particle force per unit area. If the dimensional inter-particle force is proportional to the particle 

diameter, then, in dimensionless terms, the Coulomb cohesion results 

 
( ) ( )

n

3

B1
,

1 / R R1 /
s f

d

g d g d

γ γ
χ

ρ σ σ σ σµ σ σ
= = =

− −
 (D1) 

where γ has the dimensions of N/m (effective surface tension), and Bn is a Bingham number – the 

ratio of cohesive to viscous forces. 

In experiments, the properties of the fluid are usually kept constant, while the particle 

diameter is changed; hence, changing both the particle Reynolds number and the Bingham number. 

Inverting the relation between R and the particle diameter, and using it in the expression for Bn 

gives 

 
( )

( )
( ) ( )

1/3

n 4/3 1/31/3

1
B .

R1 / 1 /

f

f fg d g

ρ γγ

µ σ σ µ σ σ
= =

− −  

 (D2) 

In the experiments of Burr et al. [2015], 
314.5 Kg/mfρ = , 0.0000185 Pa sfµ = ⋅  and 

g = 9.806 m/s2; in the experiments of Iversen and White [1982], 
31.2 Kg/mfρ = , 

0.00001Pa sfµ = ⋅  and g = 9.806 m/s2. Using these in equation (D2) gives, , with γ of order 10-5 

N/m, approximately 

 n 1/3

10
B .

R
≈  (D3) 

A more refined approach to cohesion has been proposed by Claudin and Andreotti [2006], 

whose analysis indicates that ( )
1/3

/s

a gd Eγ γ ρ= , where γa is the actual surface tension and E the 

Young modulus of the particles. However, this additional slight dependence of γ on the particle 

diameter cannot be discerned, given the experimental scattering. 
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